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ABSTRACT 

Whether the statistics of primordial fluctuations for structure formation are Gaussian or 
otherwise may be determined if the Cosmic Background Explorer satellite (COBE) makes 
a detection of the cosmic microwave-background temperature anisotropy AT~M~/TcMB. 
Non-Gaussian fluctuations may be generated in the chaotic inflationary model if two scalar 
fields interact nonlinearly with gravity. Theoretical contour maps are calculated for the 
resulting Sachs-Wolfe temperature fluctuations at large angular scales (> 3O). In the long- 
wavelength approximation, one can confidently determine the nonlinear evolution of quan- 
turn noise with gravity during the inflationary epoch because (1) different spatial points are 
no longer in causal contact, and (2) quantum gravity corrections are typically small- it is 
sutlicient to model the system using classical random fields. If the potential for two scalar 
fields V(&, 4s) possesses a sharp feature, then non-Gaussian fluctuations may arise. An ex- 
plicit model is given where cold spots in ATCMB/TCMB maps are suppressed as compared 
to the Gaussian case. The fluctuations are essentially scale-invariant. 
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1. INTRODUCTION 

With the decline of the Cold Dark Matter scenario, it is imperative that theorists propose 
alternative models which can be compared with the observations. Here, I describe a varia- 
tion of the inllation model which yields non-Gaussian primordial fluctuations. This model 
may be tested in the near future if the Cosmic Background Explorer satellite1 (COBE) 
measures the cosmic temperature anisotropy. 

Even with the difficulties in accounting for large scale structure, it is still reasonable 
to retain the inflationary scenario. Redshifts of IRAS galaxies2 and their inferred peculiar 
velocities indicate that the Universe is at critical density,sc R = p/pcrit = 0.8 f 0.3. This 
result gives support to inflation whose most outstanding prediction was that R = 1. HOW- 
ever, one must attempt to modify or improve the scenario so as to produce a set of initial 
conditions that are richer than scale-invariant Gaussian. Here, I will describe a chaotic 
inflation model that gives non-Gaussian fluctuations which are basically scale-invariant.s~s 

There are three essential ingredients to the inllationary scenario. Firstly, a scalar field 
with potential V(4) models the decay of the cosmological constant. Secondly, gravity is 
crucial in order to account for the expansion of the Universe. Finally, scalar field quantum 
fluctuations are necessary to produce inhomogeneities that will eventually produce structure 
in our Universe. One should view the inflation model as a microscope that magnifies 
quantumfluctuations at the smallest imaginable distance scales (less than the Plancklength) 
to scales that are cosmologically observable. One of the problems with linear perturbation 
theory was that there was no short distance cutoff. This gave the illusion that one could 
extrapolate to arbitrarily small distances. However, nonlinearities must be important at 
some scale. 

Non-Gaussian fluctuations would be the signature of nonlinearities7 in the inflationary 
scenario. Their calculation is problematic because one requires a formalism that governs 
the evolution of quantum-noise with gravity. Ideally, one needs a quantum theory of the 
gravitational field. In order to bypass this very severe difficulty, I will use three tricks: 

(1) The classical nonlinear evolution of long-wavelength scalar fields and gravity is tractable.8sg 
When the wavelength of a fluctuation exceeds the Hubble radius, different spatial points are 
no longer in causal contact, and they evolve as independent homogeneous universes. One 
may safely neglect second order spatial gradients in the action for scalar fields and gravity. 
Nonetheless, one must carefully join the independent spatial points to make one Universe. 

(2) Long-wavelength quantum noise behaves classically, and it may be described using clas- 
sical random fields in a process termed stochastic inilation.‘Os* Using the Wheeler-Dewitt 
equation, one may show that quantum gravity corrections are typically small.s 

(3) The long-wavelength equations may be solved completely when the logarithm of the 
scalar field potential is linear,s lnV(&) = Cko&, where the ab are constants. More 
complicated potentials may be approximated by joining various linear lnV potentials to- 
gether. In this way, one may produce models that yield non-Gaussian fluctuations that are 
consistent with current microwave background anisotropy limits, 
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2. LONG-WAVELENGTH FIELDS: 
GENERALIZATION OF HOMOGENEOUS MINISUPERSPACE 

The long-wavelength system is an elegant extension to inhomogeneous fields of homoge- 
neous minisuperspace. ss9 They enable one to construct non-Gaussian models for structure 
formation. 

Given some initial conditions, I will outline how to solve for the classical long-wavelength 
evolution of scalar fields q$(t, z) with potential V(q$) in eracting through gravity. It will t 
be assumed that the metric has the form, 

If2 = -Nap, +)dP + ,~-‘((&‘)a + (dd)~ + (dzy), (2.1) 

which describes an isotropic Universe with inhomogeneous scale factor ea(t+). The lapse 
function N is determined when one decides the time hypersurface, although an explicit 
choice is not necessary. In what follows, H(t,z) c &/N is the Hubble parameter and 
&(t, z) = e3-&/N are the momentum densities of the scalar fields. 

All second order spatial gradients in the Lagrangian of Einstein gravity with scalar 
fields will be neglected. It is necessary to retain first order spatial gradients otherwise one 
returns to homogeneous minisuperspace. The energy constraint, 

Ha = + [G f: X”” f V(&j)] 9 (2.k) 

and the evolution equations are valid at each comoving spatial point, and they are the same 
as those for homogeneous flat cosmologies. The new ingredient is the momentum constraint, 
which joins together the independent spatial points to make one Universe: 

f& = -41r e-3-a+i#. 
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111’ (2.26) 

The solution of this equation is familiar to those who study fluid mechanics. The Hobble 
parameter is assumed to be a function of the scalar fields, and the momentum densities are 
given by partial derivatives with respect to the scalar fields, 

a z H(+j), ,dj - 4 $2 8H -, 
4x a4j 

When these are substituted into the energy constraint, one obtains the separated Hamilton- 
Jacobi equation, 

(2.4) 

This self-contained equation for the Hubble parameter governs the nonlinear dynamics of 
the long-wavelength gravitational system. It is covariant in that is does not refer either to 
the time hypersnrface nor to the spatial coordinates. 
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In a significant improvement for calculations based on Hamilton-Jacobi methods,gs5 I 
gave an complete analytic solution of the SHJE for two scalar fields (&, $2) interacting 
with gravity through an exponential potential,” 

The coupling parameter p controls the steepness of the potential whereas 0 is the angle that 
surfaces of uniform potential make with the C$~ axis. The complete solution for the Hubble 
parameter depends on two arbitrary parameters, b and m, 

H q H(h,&z;~,Q;b,m), (2.7) 

and it is shown in Fig.(l). Surfaces of constant Hubble parameter are plotted as solid 
curves in Fig.(l) for the case m = 1, .9 = 0. The family of orthogonal lines are the 
physical trajectories. All solutions of the SHJE with potential (2.6) may be derived from 
this solution. 
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Fig.(l): The complete solution, H(&; b,m;p,0), of the separated Hamilton-Jacobi equa- 
tion is shown for two scalar fields interacting through a linear InV potential, eq.(2.6). Here, 
the mixing angle 0 vanishes, and the constant parameters are chosen to be b = 0 and m = 1. 
Surfaces of constant potential are just horizontal lines. The broken lines are trajectories of 
the fields which move up the page; they are orthogonal to the surfaces of constant Hubble 
parameter (solid lines). 



The complete solution (2.7) generates a transformation to new canonical variables, b, 
m, with conjugate momenta, rb and rrn, g iven by differentiation of the Hubble parameter, 

7Fb = mbedH 

as’ 

*m _ mZ,e3PaH - 
4x 4rr am’ 

The new canonical variables (b,m,d,r*) are constants in time, although they may be 
spatially dependent. They completely govern the evolution of the system. However, they are 
not all independent because they are constrained through the new version of the momentum 
constraint, 

0 = r*b,i + ~~tn,i, (2.9) 

For a single scalar field,‘*~* when the wavelength of the perturbation is larger than the 
Hubble radius, the system is characterized by a constant of integration, ( E [(a, 4). It is the 
quantity of primary interest for adiabatic models of structure formation. For example, in 
the Cold Dark Matter Model, microwave background anisotropies at angular scales greater 
than N 3” are directly proportional to -C, 

ATCMBITCMB = -C/Is. (2.10) 

This is just the Sachs-Wolfe relation. For multiple scalar fields, eq.(2.10) may be taken as 
the definition of <, and using eqs.(2.7,2.8), one may write down an exact expression which 
is a function of the initial values of the fields,9 

C z t(aOr4jO~~$)~ (2.11) 

The initial conditions of the long-wavelength problem are generated from short wwe- 
length quantum fluctuations that are assumed to begin in the ground state (Bunch-Davies 
vacuum): Then fluctuations expand beyond the Kubble radius, and they become a part of 
the long-wavelength background. 

3. NON-GAUSSIAN MODEL CALCULATIONS 

One can obtain non-Gaussian fluctuations on cosmologically observable scales from a po- 
tential created by joining three linear lnV regions as shown in Fig.(2). It is assumed that 
our patch of the Universe began homogeneously in the lower half-plane, region 1, where 
the potential parameters are given by m = 20, O1 = -50°. (For a justilication of the ho- 
mogeneous starting point, see Salopek and Bond.s) Short wavelength quantum noise then 
generates Gaussian initial conditions for the various fields. The broken curves in Fig.(2) 
depict the subsequent evolution of the scalar fields at several spatial points in a 643 lat- 
tice calculation. When they roll over the various interfaces in the potential, non-Gaussian 
fluctuations are generated. 

The Hubble function, II(&), in region 1 is taken to be the attractor solution, 

H.tt($j) = /Eexp[ - E’-#“h@g ,+JsBq (3.1) 
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corresponding to b = --co and m = 0 in (2.7) having homogeneous values. The new 
momentum constraint (2.9) is then satisfied at early times, and the evolution equations 
guarantee that it will be satisfied at late times. In region 1, the fields then evolve in time 
a according to, 

h(z,a) = Tu cOsel + ho(2), 
eic 

(3.2~~) 

&(~,a)= -~2nHa~~(~j)sinB~, &(Z,Q)= 3ee3"H,tt(4j)cost%. 
4% I.&G 

(3.26) 

The initial values of the scalar fields, &J(Z), are classical Gaussian random fields with power 
spectrum 

‘pg,o(k) 3 5 < I&(k)12 >= (%)1 (&-)-2’(pL-1), 

whose amplitude is determined by the value of the Hubble parameter Ho when the lattice 
size exceeded the Hubble radius. Here, Ho = lo-%np is chosen to give results consistent 
with current temperature anisotropy limits. The amplitudes of the homogeneous k = 0 
Fourier modes are arbitrary. 

-10-e -5x10* 
$1 /“=b 
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Fig.(Z): (a) Non-Gaussian fluctuations consistent with CMB limits may be generated when 
the scalar fields pass over several interfaces in their potential. The light solid curves are lines 
of uniform potential, whereas the heavy lines are the interfaces which continuously join the 
3 regions with linear ln.V(&,&). If the scalar field trajectories (broken lines) beginning 
at the bottom of the diagram pass sufficiently near the origin, then nonlinear effects at 
long wavelengths become important. For a 643 lattice simulation, the histogram of the 
resulting fluctuations in C are shown in Fig.(b). The distribution of microwave background 
fluctuations at large angular scales is found by reflecting the distribution about the vertical 
axis: ATCMB/TCMB = -C/15. For comparison, a Gaussian distribution (smooth curve) 
with the same mean and dispersion as the histogram is also shown. 
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If the trajectories pass into the upper right hand area, region 2 (0, = O”), they receive 
an upward kick from the potential, which later forces them into region 3 (03 = -30’). (If 
this diagram were extended, one would find that trajectories actually cross into region 3.) 
The angles of the interfaces starting with the lower right and proceeding counterclockwise 
are, ~12 = lo’, ~13 = 39’ and ~31 = 158’. The resulting distribution of C is plotted in 
Fig.(2b). For the parameters shown, it was found that non-Gaussian fluctuations can arise 
if the fields passed sufficiently near the origin, which can be arranged through the arbitrary 
choice of the homogeneous mode amplitudes in eq.(3.2). The calculations are performed 
using the analytic expression for C eq.(2.11). 

A 2-D slice of the 643 lattice simulation is shown in Fig.(3). Large positive excursions of 
C are heavily suppressed (i.e. negative excursions of ATCMB/TCMB are suppressed). With 
some further analysis, this plot could be interpreted as a large angle microwave background 
map. The power spectrum for the full 3-D simulation is given in Fig.(4). It is essentially 
flat. 

TEMPERATURE ANISOTROPIES 
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Fig.(3): Sachs-Wolfe temperature fluctuations are shown on a 2-D planar slice for the 
non-Gaussian model considered in Fig.(2). The shaded areas are 2u deviations from the 
mean for ATCMB/TCMB. The solid lines correspond to 1,Oo contours, whereas the broken 
lines are -10 deviations. The most significant feature of this plot is that cold spots in 
the temperature anisotropy are suppressed over the usual Cold Dark Matter model with 
Gaussian primordial fluctuations. In fact, there are no -2~ fluctuations of ATCMB/TCMB 
in this 643 lattice calculation, a result which is expected from the distribution function of 
Fig.(2b). 
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4. SUMMARY AND DISCUSSION 

The distribution of temperature anisotropies could serve as a valuable discriminator of 
various models of the early Universe. For example, it could indicate that nonlinemities in 
inflation model were important. It could even determine what was the initial quantum state 
of the Universe (see, for example, Hartle13). 

The resulting structure formation scenario for the proposed non-Gaussian model can 
be described qualitatively. Since the nonlinearities did not change the shape of the primor- 
dial fluctuation spectrum in the Newtonian potential (see Fig.(4)), it is natural to assume 
(at least in the first approximation) that the normalization of the spectrum using the two- 
point correlation function of galaxies would be the same as the standard Cold Dark Matter 
model” with Gaussian fluctuations. For example, the variance of temperature fluctuations 
< (ATcMB/TcMB)~ > would be the same. (In fact, the initial value of the Hubble param- 
eter, Ho = 10~em?, given in Sec. 4 was chosen for this reason.) Differences from standard 
CDM would appear in the distribution of the fluctuations. Cold spots in the tempera- 
ture fluctuations would be suppressed as shown in Fig.(3). In addition, I expect that high 
positive density excursions in the density field will be suppressed. 
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Fig.(4): The power spectrum, PC(k) s k3 < ICI2 > /(27?), for the variable ( is calculated 
by taking the Fourier transform of the 64’ lattice simulation described in in Fig.(2). Nonlin- 
ear eRecta do not change the shape of the flat spectrum whose amplitude is approximately 
W) - 10-8.3.The comoving wavenumber k = 1 is the largest mode that can fit in the 
lattice. The slow monotonic decrease for increasing values of k is a consequence of the 
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Hubble parameter decreasing in region 1. The larger the potential parameter pl of region 1 
is chosen, the flatter is the fluctuation spectrum. The spike in the last bin is not significant; 
it arises because the number of modes in the last bin is small, leading to large shot noise. 

There are problems with non-Gaussian scale-invariant fluctuations, or at least with the 
simple-minded picture adopted above. It is difficult to account for the excess power in the 
two-point correlation function of galaxies as indicated by the APM survey.ls However, one 
should not be overly eager to reject this model because there are observational uncertainties. 

I would like to thank N. Kaiser for some interesting discussions. This work was sup- 
ported by the U.S. Department of Energy and NASA at Fermilab (Grant No. NAGW-1340). 
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